organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

1-(Morpholinomethyl)indoline-2,3-dione

Ying Tang,^a Jie Zhang,^a Yanging Miao^b and Gang Chen^a*

^aCollege of Chemistry and Chemical Engineering, Xi'an Shiyou University, Second Dianzi Road, Xi'an 710065, People's Republic of China, and ^bDepartment of Pharmacy, Xi'an Medical University, Hanguang Round 137, Xi'an 710021, People's Republic of China Correspondence e-mail: cg1014@126.com

Received 29 May 2010; accepted 15 June 2010

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.002 Å; R factor = 0.042; wR factor = 0.144; data-to-parameter ratio = 20.8.

In the title compound, $C_{13}H_{14}N_2O_3$, the morpholine ring displays a chair conformation, with the (2,3-dioxoindolin-1yl)methyl group in an equatorial position. The crystal structure is stabilized by intermolecular C-H···O hydrogen bonds.

Related literature

For the synthesis of isatin-N-Mannich bases, see: Varma & Nobles ((1966). For the bioactivity of isatin derivatives, see: Glover et al. (1980, 1988); Maysinger et al. (1980).

Experimental

$C_{13}H_{14}N_2O_3$
$M_r = 246.26$
Monoclinic, P21/c
a = 11.608 (2) Å
b = 8.2818 (17) Å

c = 12.595 (3) Å
$\beta = 100.20 \ (3)^{\circ}$
V = 1191.7 (4) Å ³
Z = 4
Mo $K\alpha$ radiation

 $\mu = 0.10 \text{ mm}^{-1}$ T = 293 K

Data collection

Bruker SMART CCD	7614 measured reflections
diffractometer	3556 independent reflections
Absorption correction: multi-scan	2275 reflections with $I > 2\sigma(I)$
(SADABS; Bruker, 2001)	$R_{\rm int} = 0.021$
$T_{\min} = 0.979, \ T_{\max} = 0.984$	

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.042$ wR(F ²) - 0.144	H atoms treated by a mixture of independent and constrained
S = 0.99	refinement
171 parameters	$\Delta \rho_{\rm max} = 0.19 \text{ e A}^{-1}$ $\Delta \rho_{\rm min} = -0.22 \text{ e } \text{\AA}^{-3}$

 $0.26 \times 0.18 \times 0.16 \; \mathrm{mm}$

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$C6-H6A\cdotsO1^{i}$ $C5-H5A\cdotsO2^{ii}$	0.93	2.47	3.349 (2)	158
	0.93	2.52	3.216 (2)	131

Symmetry codes: (i) $x, -y + \frac{1}{2}, z + \frac{1}{2}$; (ii) $x, -y + \frac{3}{2}, z + \frac{1}{2}$.

Data collection: SMART (Bruker, 2001); cell refinement: SAINT-Plus (Bruker, 2001); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

This work was supported financially by two grants from the National Science Foundation of China (No. 50874092) and the Natural Science Research Plan Projects of Shaanxi Science and Technology Department (SJ08B20).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RZ2460).

References

Bruker (2001). SMART, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

Glover, V., Halket, J. M., Watkins, P. J., Clow, A., Goodwin, B. L. & Sandler, M. (1988). J. Neurochem. 51, 656-659.

Glover, V., Reveley, M. A. & Sandler, M. (1980). Biochem. Pharmacol. 29, 467-470

Maysinger, D. & Movrin, M. (1980). Arzneim. Forschung. 30, 1839-1840.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Varma, R. S. & Nobles, W. L. (1966). J. Heterocycl. Chem. 3, 462-465.

supplementary materials

Acta Cryst. (2010). E66, o1748 [doi:10.1107/S1600536810023160]

1-(Morpholinomethyl)indoline-2,3-dione

Y. Tang, J. Zhang, Y. Miao and G. Chen

Comment

Isatin has draw great attention from being discovered as a component of endogenous monoamine oxidase (MAO) inhibitory activity (tribulin) and subsequently identified as a selective inhibitor of MAO B at low concentrations (Glover *et al.*, 1980, 1988). In the following years, many isatin derivatives, such as isatin hydrazono, isatin Mannich bases and isatin based spiroazetidinones, have also been reported to possess anticonvulsant activity (Maysinger, *et al.*, 1980). Herein we report the synthesis and crystal structure of the title compound.

The X-ray structural analysis confirmed the assignment of the structure from spectroscopic data. The molecular structure of the title compound is depicted in Fig. 1. Geometric parameters of the title compound are in the usual ranges. The morpholin ring displays a typical chair conformation, with the (2,3-dioxoindolin-1-yl)methyl group in equatorial position. In the crystal structure, the molecules are linked into a three-dimensional network by C—H…O hydrogen bonds (Table 1).

Experimental

The title compound was synthesized according the literature method (Varma & Nobles, 1966). Isatin (1 mmol), formaldehyde (1.2 mmol) and morpholin (1.2 mmol) were dissolved in methanol (20 ml). The mixture was refluxed until the disappearance of isatin, as evidenced by thin-layer chromatography. The solvent was removed *in vacuo* and the residue was separated by column chromatography (silica gel, petroleum ether/ethyl acetate = 1:1 v/v), giving the title compound. ¹H-NMR (D₆—DMSO, 400 MHz): 7.61 (2*H*, m), 7.15 (1*H*, t, J = 7.2 Hz), 7.09 (1*H*, d, J = 8.0 Hz), 4.45 (2*H*, s), 3.70 (4*H*, t, J = 4.8 Hz), 2.63 (4*H*, t, J = 4.8 Hz); MS (EI) m/z: 246 (M^+). 20 mg of the title compound was dissolved in 50 ml methanol and the solution was kept at room temperature for 4 d. Slow evaporation of the solvent gave orange single crystals of the title compound suitable for X-ray analysis.

Refinement

The H atoms attached to atom C9 were located in a difference Fourier map and refined freely. All other H atoms were placed at calculated positions and refined as riding, with C—H = 0.93-0.98 Å, and with $U_{iso}(H) = 1.2U_{eq}(C)$.

Figures

Fig. 1. An *ORTEP-3* drawing of the title compound, with the atom-numbering scheme and 30% probability displacement ellipsoids.

1-(Morpholinomethyl)indoline-2,3-dione

Crystal data

$C_{13}H_{14}N_2O_3$
$M_r = 246.26$
Monoclinic, $P2_1/c$
Hall symbol: -P 2ybc
<i>a</i> = 11.608 (2) Å
<i>b</i> = 8.2818 (17) Å
<i>c</i> = 12.595 (3) Å
$\beta = 100.20 \ (3)^{\circ}$
$V = 1191.7 (4) \text{ Å}^3$
Z = 4

Data collection

Bruker SMART CCD diffractometer	3556 independent reflections
Radiation source: fine-focus sealed tube	2275 reflections with $I > 2\sigma(I)$
graphite	$R_{\rm int} = 0.021$
phi and ω scans	$\theta_{\text{max}} = 30.4^{\circ}, \ \theta_{\text{min}} = 1.8^{\circ}$
Absorption correction: multi-scan (<i>SADABS</i> ; Bruker, 2001)	$h = -15 \rightarrow 15$
$T_{\min} = 0.979, \ T_{\max} = 0.984$	$k = -11 \rightarrow 10$
7614 measured reflections	$l = -17 \rightarrow 15$

F(000) = 520 $D_{\rm x} = 1.373 \text{ Mg m}^{-3}$

 $\theta = 1.5-25.0^{\circ}$ $\mu = 0.10 \text{ mm}^{-1}$ T = 293 KBlock, orange

 $0.26 \times 0.18 \times 0.16 \text{ mm}$

Mo K α radiation, $\lambda = 0.71073$ Å Cell parameters from 7356 reflections

Refinement

Refinement on F^2	Primary atom site location: structure-invariant direct methods
Least-squares matrix: full	Secondary atom site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.042$	Hydrogen site location: inferred from neighbouring sites
$wR(F^2) = 0.144$	H atoms treated by a mixture of independent and constrained refinement
<i>S</i> = 0.99	$w = 1/[\sigma^{2}(F_{o}^{2}) + (0.1P)^{2}]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
3556 reflections	$(\Delta/\sigma)_{\rm max} = 0.039$
171 parameters	$\Delta \rho_{\rm max} = 0.19 \ {\rm e} \ {\rm \AA}^{-3}$
0 restraints	$\Delta \rho_{\rm min} = -0.22 \ {\rm e} \ {\rm \AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc*. and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

	x	У	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$	
N2	0.91766 (9)	0.23385 (12)	0.11391 (8)	0.0368 (3)	
N1	0.73127 (8)	0.33226 (11)	0.00535 (8)	0.0347 (3)	
C7	0.68098 (9)	0.48053 (14)	0.03062 (9)	0.0313 (3)	
02	0.59676 (8)	0.46330 (13)	-0.24949 (7)	0.0527 (3)	
C10	0.98088 (11)	0.23531 (16)	0.02322 (11)	0.0414 (3)	
H10A	0.9591	0.3302	-0.0209	0.050*	
H10B	0.9604	0.1404	-0.0212	0.050*	
03	1.14402 (7)	0.37200 (13)	0.13337 (9)	0.0564 (3)	
01	0.73752 (10)	0.19019 (12)	-0.15122 (8)	0.0567 (3)	
C6	0.68346 (10)	0.54811 (15)	0.13085 (10)	0.0379 (3)	
H6A	0.7192	0.4957	0.1934	0.046*	
C8	0.62332 (10)	0.55651 (14)	-0.06320 (9)	0.0345 (3)	
C2	0.63447 (10)	0.45189 (15)	-0.15409 (10)	0.0377 (3)	
С9	0.79252 (11)	0.21364 (15)	0.08256 (11)	0.0373 (3)	
C5	0.63034 (11)	0.69807 (15)	0.13481 (11)	0.0456 (3)	
H5A	0.6323	0.7477	0.2014	0.055*	
C1	0.70789 (11)	0.30626 (15)	-0.10310 (10)	0.0385 (3)	
C3	0.56961 (11)	0.70484 (16)	-0.05764 (11)	0.0444 (3)	
H3A	0.5311	0.7557	-0.1197	0.053*	
C13	0.95237 (11)	0.37262 (17)	0.18371 (11)	0.0435 (3)	
H13A	0.9126	0.3692	0.2452	0.052*	
H13B	0.9303	0.4718	0.1443	0.052*	
C4	0.57469 (12)	0.77531 (16)	0.04263 (12)	0.0495 (4)	
H4A	0.5403	0.8757	0.0481	0.059*	
C12	1.08328 (12)	0.3691 (2)	0.22195 (12)	0.0540 (4)	
H12A	1.1065	0.4616	0.2680	0.065*	
H12B	1.1043	0.2721	0.2642	0.065*	
C11	1.11103 (11)	0.23690 (17)	0.06581 (12)	0.0514 (4)	
H11A	1.1329	0.1385	0.1062	0.062*	
H11B	1.1529	0.2397	0.0057	0.062*	
H9A	0.7745 (10)	0.1067 (17)	0.0422 (11)	0.038 (3)*	
H9B	0.7566 (11)	0.2191 (14)	0.1471 (11)	0.036 (3)*	
2°					
Atomic displacement parameters (A^2)					

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
N2	0.0360 (5)	0.0363 (5)	0.0385 (6)	0.0006 (4)	0.0077 (4)	0.0042 (4)

supplementary materials

0.0366 (5)	0.0373 (5)	0.0306 (5)	0.0046 (4)	0.0074 (4)	-0.0023 (4)
0.0285 (5)	0.0345 (6)	0.0319 (6)	-0.0018 (4)	0.0082 (4)	-0.0003 (4)
0.0613 (6)	0.0656 (7)	0.0290 (5)	-0.0100 (5)	0.0018 (4)	0.0040 (4)
0.0420 (7)	0.0404 (7)	0.0440 (7)	0.0003 (5)	0.0135 (6)	-0.0044 (5)
0.0414 (5)	0.0612 (6)	0.0685 (7)	-0.0114 (4)	0.0150 (5)	-0.0142 (5)
0.0671 (7)	0.0587 (6)	0.0452 (6)	0.0075 (5)	0.0125 (5)	-0.0178 (5)
0.0385 (6)	0.0456 (7)	0.0302 (6)	0.0014 (5)	0.0073 (5)	-0.0019 (5)
0.0316 (6)	0.0402 (6)	0.0322 (6)	-0.0026 (5)	0.0072 (5)	0.0032 (5)
0.0352 (6)	0.0475 (7)	0.0304 (6)	-0.0072 (5)	0.0058 (5)	0.0025 (5)
0.0361 (6)	0.0362 (6)	0.0403 (7)	-0.0010 (5)	0.0086 (5)	0.0055 (5)
0.0474 (8)	0.0460 (7)	0.0458 (8)	0.0010 (6)	0.0146 (6)	-0.0114 (6)
0.0384 (6)	0.0449 (7)	0.0331 (6)	-0.0028 (5)	0.0089 (5)	-0.0053 (5)
0.0423 (7)	0.0432 (7)	0.0474 (8)	0.0050 (5)	0.0074 (6)	0.0115 (6)
0.0416 (7)	0.0487 (7)	0.0409 (7)	0.0013 (6)	0.0092 (6)	-0.0057 (6)
0.0488 (8)	0.0391 (7)	0.0623 (9)	0.0076 (6)	0.0145 (7)	-0.0014 (6)
0.0440 (7)	0.0652 (9)	0.0509 (9)	-0.0030(7)	0.0033 (7)	-0.0131 (7)
0.0405 (7)	0.0549 (8)	0.0611 (9)	-0.0008 (6)	0.0157 (7)	-0.0116 (7)
	0.0366(5) 0.0285(5) 0.0613(6) 0.0420(7) 0.0414(5) 0.0671(7) 0.0385(6) 0.0316(6) 0.0352(6) 0.0361(6) 0.0361(6) 0.0474(8) 0.0384(6) 0.0423(7) 0.0416(7) 0.0488(8) 0.0440(7) 0.0405(7)	$\begin{array}{ccccc} 0.0366 \ (5) & 0.0373 \ (5) \\ 0.0285 \ (5) & 0.0345 \ (6) \\ 0.0613 \ (6) & 0.0656 \ (7) \\ 0.0420 \ (7) & 0.0404 \ (7) \\ 0.0414 \ (5) & 0.0612 \ (6) \\ 0.0671 \ (7) & 0.0587 \ (6) \\ 0.0385 \ (6) & 0.0456 \ (7) \\ 0.0316 \ (6) & 0.0402 \ (6) \\ 0.0352 \ (6) & 0.0475 \ (7) \\ 0.0361 \ (6) & 0.0362 \ (6) \\ 0.0474 \ (8) & 0.0460 \ (7) \\ 0.0384 \ (6) & 0.0432 \ (7) \\ 0.0416 \ (7) & 0.0487 \ (7) \\ 0.0448 \ (8) & 0.0391 \ (7) \\ 0.0440 \ (7) & 0.0549 \ (8) \\ \end{array}$	0.0366(5) $0.0373(5)$ $0.0306(5)$ $0.0285(5)$ $0.0345(6)$ $0.0319(6)$ $0.0613(6)$ $0.0656(7)$ $0.0290(5)$ $0.0420(7)$ $0.0404(7)$ $0.0440(7)$ $0.0414(5)$ $0.0612(6)$ $0.0685(7)$ $0.0671(7)$ $0.0587(6)$ $0.0452(6)$ $0.0385(6)$ $0.0456(7)$ $0.0302(6)$ $0.0316(6)$ $0.0402(6)$ $0.0322(6)$ $0.0352(6)$ $0.0475(7)$ $0.0304(6)$ $0.0361(6)$ $0.0460(7)$ $0.0458(8)$ $0.0384(6)$ $0.0449(7)$ $0.0331(6)$ $0.0416(7)$ $0.0487(7)$ $0.0409(7)$ $0.0488(8)$ $0.0391(7)$ $0.0623(9)$ $0.0440(7)$ $0.0552(9)$ $0.0509(9)$ $0.0405(7)$ $0.0549(8)$ $0.0611(9)$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.0366(5) $0.0373(5)$ $0.0306(5)$ $0.0046(4)$ $0.0074(4)$ $0.0285(5)$ $0.0345(6)$ $0.0319(6)$ $-0.0018(4)$ $0.0082(4)$ $0.0613(6)$ $0.0656(7)$ $0.0290(5)$ $-0.0100(5)$ $0.0018(4)$ $0.0420(7)$ $0.0404(7)$ $0.0440(7)$ $0.0003(5)$ $0.0135(6)$ $0.0414(5)$ $0.0612(6)$ $0.0685(7)$ $-0.0114(4)$ $0.0150(5)$ $0.0671(7)$ $0.0587(6)$ $0.0452(6)$ $0.0075(5)$ $0.0125(5)$ $0.0385(6)$ $0.0456(7)$ $0.0302(6)$ $0.0014(5)$ $0.0073(5)$ $0.0316(6)$ $0.0402(6)$ $0.0322(6)$ $-0.0026(5)$ $0.0072(5)$ $0.0352(6)$ $0.0475(7)$ $0.0304(6)$ $-0.0072(5)$ $0.0088(5)$ $0.0361(6)$ $0.0362(6)$ $0.0403(7)$ $-0.0010(5)$ $0.0088(5)$ $0.0474(8)$ $0.0460(7)$ $0.0458(8)$ $0.0010(6)$ $0.0146(6)$ $0.0384(6)$ $0.0449(7)$ $0.0331(6)$ $-0.0028(5)$ $0.0074(6)$ $0.0416(7)$ $0.0487(7)$ $0.0409(7)$ $0.0013(6)$ $0.0092(6)$ $0.0488(8)$ $0.0391(7)$ $0.0509(9)$ $-0.0030(7)$ $0.0033(7)$ $0.0440(7)$ $0.0549(8)$ $0.0611(9)$ $-0.0008(6)$ $0.0157(7)$

Geometric parameters (Å, °)

N2—C9	1.4460 (16)	C8—C3	1.3850 (17)
N2—C13	1.4596 (16)	C8—C2	1.4597 (17)
N2-C10	1.4631 (16)	C2—C1	1.5490 (18)
N1-C1	1.3618 (15)	С9—Н9А	1.024 (14)
N1—C7	1.4199 (14)	С9—Н9В	0.979 (14)
N1—C9	1.4736 (15)	C5—C4	1.382 (2)
С7—С6	1.3765 (16)	С5—Н5А	0.9300
С7—С8	1.4000 (15)	C3—C4	1.383 (2)
O2—C2	1.2075 (15)	С3—НЗА	0.9300
C10—C11	1.5110 (18)	C13—C12	1.5109 (18)
С10—Н10А	0.9700	C13—H13A	0.9700
C10—H10B	0.9700	C13—H13B	0.9700
O3—C11	1.4168 (16)	C4—H4A	0.9300
O3—C12	1.4217 (17)	C12—H12A	0.9700
01—C1	1.2180 (14)	C12—H12B	0.9700
C6—C5	1.3914 (17)	C11—H11A	0.9700
С6—Н6А	0.9300	C11—H11B	0.9700
C9—N2—C13	114.36 (10)	C4—C5—C6	121.82 (12)
C9—N2—C10	113.97 (10)	C4—C5—H5A	119.1
C13—N2—C10	109.92 (10)	C6—C5—H5A	119.1
C1—N1—C7	110.17 (10)	O1—C1—N1	126.89 (12)
C1—N1—C9	122.94 (10)	O1—C1—C2	126.25 (12)
C7—N1—C9	126.73 (10)	N1—C1—C2	106.86 (10)
С6—С7—С8	121.37 (11)	C4—C3—C8	118.27 (12)
C6—C7—N1	127.92 (11)	C4—C3—H3A	120.9
C8—C7—N1	110.71 (10)	C8—C3—H3A	120.9
N2-C10-C11	109.34 (11)	N2-C13-C12	109.35 (11)
N2-C10-H10A	109.8	N2-C13-H13A	109.8
C11-C10-H10A	109.8	C12—C13—H13A	109.8

N2-C10-H10B	109.8	N2-C13-H13B	109.8
C11-C10-H10B	109.8	C12—C13—H13B	109.8
H10A—C10—H10B	108.3	H13A—C13—H13B	108.3
C11—O3—C12	109.81 (11)	C3—C4—C5	120.66 (13)
C7—C6—C5	117.28 (11)	C3—C4—H4A	119.7
С7—С6—Н6А	121.4	C5—C4—H4A	119.7
С5—С6—Н6А	121.4	O3—C12—C13	111.11 (12)
C3—C8—C7	120.55 (11)	O3—C12—H12A	109.4
C3—C8—C2	132.02 (11)	C13—C12—H12A	109.4
C7—C8—C2	107.44 (10)	O3—C12—H12B	109.4
O2—C2—C8	131.85 (13)	C13—C12—H12B	109.4
O2—C2—C1	123.32 (12)	H12A—C12—H12B	108.0
C8—C2—C1	104.82 (10)	O3—C11—C10	111.53 (11)
N2	116.55 (10)	O3—C11—H11A	109.3
N2—C9—H9A	110.1 (7)	C10-C11-H11A	109.3
N1—C9—H9A	102.5 (7)	O3—C11—H11B	109.3
N2—C9—H9B	108.9 (7)	C10-C11-H11B	109.3
N1—C9—H9B	106.9 (7)	H11A—C11—H11B	108.0
Н9А—С9—Н9В	111.9 (10)		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H···A
C6—H6A···O1 ⁱ	0.93	2.47	3.349 (2)	158
C5—H5A···O2 ⁱⁱ	0.93	2.52	3.216 (2)	131
Symmetry codes: (i) x , $-y+1/2$, $z+1/2$; (ii) x , $-y+3/2$, z	z+1/2.			

Fig. 1